Orbital energies and negative electron affinities from density functional theory: Insight from the integer discontinuity.

نویسندگان

  • Andrew M Teale
  • Frank De Proft
  • David J Tozer
چکیده

Orbital energies in Kohn-Sham density functional theory (DFT) are investigated, paying attention to the role of the integer discontinuity in the exact exchange-correlation potential. A series of closed-shell molecules are considered, comprising some that vertically bind an excess electron and others that do not. High-level ab initio electron densities are used to calculate accurate orbital energy differences, Deltavarepsilon, between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), using the same potential for both. They are combined with accurate vertical ionization potentials, I(0), and electron affinities, A(0), to determine accurate "average" orbital energies. These are the orbital energies associated with an exchange-correlation potential that averages over a constant jump in the accurate potential, of magnitude Delta(XC)=(I(0)-A(0))-Deltavarepsilon, as given by the discontinuity analysis. Local functional HOMO energies are shown to be almost an order of magnitude closer to these average values than to -I(0), with typical discrepancies of just 0.02 a.u. For systems that do not bind an excess electron, this level of agreement is only achieved when A(0) is set equal to the negative experimental affinity from electron transmission spectroscopy (ETS); it degrades notably when the zero ground state affinity is instead used. Analogous observations are made for the local functional LUMO energies, although the need to use the ETS affinities is less pronounced for systems where the ETS values are very negative. The application of an asymptotic correction recovers the preference, leading to positive LUMO energies (but bound orbitals) for these systems, consistent with the behavior of the average energies. The asymptotically corrected LUMO energies typically agree with the average values to within 0.02 a.u., comparable to that observed with the HOMOs. The study provides numerical support for the view that local functionals exhibit a near-average behavior based on a constant jump of magnitude Delta(XC). It illustrates why a recently proposed DFT expression involving local functional frontier orbital energies and ionization potential yields reasonable estimates of negative ETS affinities and is consistent with earlier work on the failure of DFT for charge-transfer excited states. The near-average behavior of the exchange-correlation potential is explicitly illustrated for selected systems. The nature of hybrid functional orbital energies is also mentioned, and the results of the study are discussed in terms of the variation in electronic energy as a function of electron number. The nature of DFT orbital energies is of great importance in chemistry; this study contributes to the understanding of these quantities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Study of stereoelectronic effects of Boron Nitride Nanotubes in interaction with 7-hydroxy phenothiyazine 3-one sulphure dye by electron density functional theory

In this study interaction of phenothiazine sulfur dye with (5, 5) armchair open-end boron nitride nanotubes (BNNTs) in interaction (with a length of 7 Å) was investigated. The impacts of the estereoelectronic effect associated with donor-acceptor electron delocalizations, dipole-dipole interactions and total steric exchange energies on the structural and electronic properties and reactivity of ...

متن کامل

Theoretical Study of stereoelectronic effects of Boron Nitride Nanotubes in interaction with 7-hydroxy phenothiyazine 3-one sulphure dye by electron density functional theory

In this study interaction of phenothiazine sulfur dye with (5, 5) armchair open-end boron nitride nanotubes (BNNTs) in interaction (with a length of 7 Å) was investigated. The impacts of the estereoelectronic effect associated with donor-acceptor electron delocalizations, dipole-dipole interactions and total steric exchange energies on the structural and electronic properties and reactivity of ...

متن کامل

Kohn-Sham potentials in exact density-functional theory at noninteger electron numbers

Within exact electron density-functional theory, we investigate Kohn-Sham (KS) potentials, orbital energies, and noninteracting kinetic energies of the fractional ions of Li, C and F. We use quantum Monte Carlo densities as input, which are then fitted, interpolated at noninteger electron numbers N , and inverted to produce accurate KS potentials v s (r). We study the dependence of the KS poten...

متن کامل

Density functional theory study of the structural properties of cis-trans isomers of bis-(5-nitro-2H-tetrazolato-N2) tetraammine cobalt (III) perchlorate (BNCP)

In present study, the density functional theory (DFT-B3LYP) method with SVP basis set was used for optimizing and studying the electronic structural properties of cis and trans isomers of bis-(5-nitro-2H-tetrazolato-N2) tetraammine cobalt (III) perchlorate (BNCP) as powerful explosives at 298.15 K temperature and 1 atmosphere pressure. And also, Natural Bond Orbital (NBO) population analysis an...

متن کامل

Piecewise linearity of approximate density functionals revisited: implications for frontier orbital energies.

In the exact Kohn-Sham density-functional theory, the total energy versus the number of electrons is a series of linear segments between integer points. However, commonly used approximate density functionals produce total energies that do not exhibit this piecewise-linear behavior. As a result, the ionization potential theorem, equating the highest occupied eigenvalue with the ionization potent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 129 4  شماره 

صفحات  -

تاریخ انتشار 2008